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abstract: Thermal performance curves (TPCs) are increasingly
used as a convenient approach to predict climate change impacts on
ectotherms that accounts for organismal thermal sensitivity; how-
ever, directly applying TPCs to temperature data to estimate fitness
has yielded contrasting predictions depending on assumptions regard-
ing climate variability. We compare direct application of TPCs to an
approach integrating TPCs for different fitness components (e.g., per
capita birth rate, adult life span) across ectotherm life cycles into a pop-
ulation dynamic model, which we independently validated with cen-
sus data and applied to hemipteran insect populations across latitude.
The population model predicted that climate change will reduce insect
fitness more at higher latitudes due to its effects on survival but will
reduce net reproductive rate more at lower latitudes due to its effects
on fecundity. Directly applying TPCs underestimated climate change
impacts on fitness relative to incorporating the TPCs into the popula-
tion model due to simplifying survival dynamics across the life cycle.
The populationmodel predicted that climate change will reducemean
insect density and increase population variability at higher latitudes
via reduced survival, despite faster development and a longer activity
period. Our study highlights the importance of considering how multi-
ple fitness components respond to climate variability across the life cycle
to better understand and anticipate the ecological consequence of cli-
mate change.

Keywords: climate change, demographics, population dynamics,
thermal performance curves.

Introduction

Research considering the physiological sensitivity of or-
ganisms to climate change has questioned the initial logic
that organisms will be most strongly impacted by climate
change at high latitudes experiencingmore extreme climate
change (Ghalambor et al. 2006; Deutsch et al. 2008; Huey
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et al. 2012; Buckley and Kingsolver 2021). Thermal per-
formance curves (TPCs) offer an expedient way to charac-
terize organismal sensitivity (Angilletta 2009). TPCs de-
scribing the temperature dependence of fitness have been
increasingly used to predict climate change impacts on
ectotherms along latitudinal climate gradients character-
ized by high mean annual temperatures and low seasonal
temperature variability at lower latitudes and the converse
at higher latitudes (Deutsch et al. 2008; Dillon et al. 2010;
Kingsolver et al. 2013; Sunday et al. 2014; Vasseur et al.
2014).
TPCs have generated diverse and sometimes contrasting

predictions about the ecological impacts of climate change
depending on underlying assumptions. Some studies pre-
dict that tropical ectotherms will be more vulnerable to cli-
mate change than species at higher latitudes (Deutsch et al.
2008; Dillon et al. 2010; Sunday et al. 2014) because their
TPCs are specialized to relatively constant thermal condi-
tions and their climates are already near the temperatures
at which fitness declines precipitously (points in fig. 1A, 1B).
Other studies emphasize the importance of temperature
variation, predicting that midlatitude species will be sim-
ilarly or more vulnerable to climate change because of their
relatively specialized TPCs combined with much greater
temperature fluctuations and more extreme climate warm-
ing (Kingsolver et al. 2013; Vasseur et al. 2014). High-
latitude species are generally predicted to be less sensitive
to climate change impacts because of their more generalized
TPCs (Deutsch et al. 2008; Kingsolver et al. 2013). Howac-
curately TPCs predict climate change impacts, however, re-
mains an important question (Kingsolver et al. 2013; Vasseur
et al. 2014; Sinclair et al. 2016; Buckley and Kingsolver 2021).
TPCs are typically constructed by fitting nonlinear curves

(black lines in fig. 1) to laboratory data on species’ fitness
or performance across a range of constant temperatures.
Integrating the TPC over a biologically realistic temperature
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regime—either body temperature or environmental tem-
perature as a proxy (histograms in fig. 1A, 1B)—yields an
estimate of a species’ mean fitness or performance in that
climate (points in fig. 1A, 1B). A recent review (Sinclair
et al. 2016), however, highlights biologically questionable
assumptions required to use TPCs to directly estimate ec-
totherm responses to climate change. We assessed the as-
sumptions that (1) population dynamics can be ignored,
(2) fitness TPCs can predict species’ responses to temper-
ature variation without considering the components of fit-
ness, and (3) organisms respond similarly to environmental
variation across their life cycle (Sinclair et al. 2016). Specif-
ically, we predicted climate change impacts on ectotherm
population dynamics (TPC assumption 1) using a math-
ematical framework that explicitly considers the thermal
responses of fitness components (TPC assumption 2) and
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Figure 1: Thermal performance curves (TPCs) predict climate change impacts on two fitness metrics—intrinsic population growth rate, rm
(A), and net reproductive rate, R0 (B)—of Clavigralla shadabi in Benin (top panels). Integrating TPCs (black curves) directly over seasonal
temperature variation (depicted by histograms) yields the mean fitness in that climate. Blue points are mean values in the recent climate
(1980–1985; blue histogram), and orange points are mean values in the future climate (2095–2100; orange histogram). A schematic of the
population model (bottom panels) depicts hypothetical TPCs characteristic of the different fitness components—development time (C ), sur-
vival to reproduction (D), per capita birth rate (E), and adult life span (F)—over the life cycle. The insect icons were illustrated by Julie
Johnson (Life Science Studios).
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mechanistically incorporates temperature-dependent devel-
opmental delays between life stages (TPC assumption 3).
We evaluated how climate change responses predicted by
the population model, which integrates TPCs for multiple
fitness components accounting for complex life cycles, dif-
fer from those produced by integrating TPCs directly. Mod-
els that avoid common TPC assumptions by considering
temperature effects on fitness components (e.g., fig. 1C–
1F) across life stages may better predict climate change im-
pacts on fitness, and its components, than does direct ap-
plication of fitness TPCs (Kingsolver et al. 2011; Levy et al.
2015; Kingsolver and Buckley 2020; Buckley et al. 2021).
We fit TPCs for two fitness metrics (intrinsic popula-

tion growth rate, rm, and net reproductive rate, R0) and four
fitness components (survival to reproduction, per capita
birth rate, development time, adult life span) using labora-
tory data for 21 populations of hemipteran insects (Barlow
1962; Deloach 1974; Asante et al. 1991; Dreyer and Baum-
gartner 1996; Wang et al. 1997; Tsai and Liu 1998; Xia
et al. 1999; Morgan et al. 2001; Dabire et al. 2005; Lu et al.
2009, 2010; Conti et al. 2010; Jandricic et al. 2010). Hemip-
teran insects are an excellent study system because they
are relatively well-studied ectotherms inhabiting a wide range
of climates across latitude (table S1). We incorporated fit-
ness component TPCs into our population model and sim-
ulated the dynamics of each population in both its recent
climate (using historical data from nearby climate stations)
and its future climate (using CMIP6 climate model pro-
jections for 2025–2100). We investigated four key ques-
tions. First, how accurately can population dynamics be
predicted by models incorporating temperature responses
of multiple fitness components and accounting for com-
plex life cycles? Second, how does climate change influ-
ence fitness and its constituent components for ectotherm
populations inhabiting different climate regimes across lat-
itude? Third, how accurately are these climate change
impacts predicted by the direct application of TPCs? Fourth,
how will climate change affect ectotherm population dy-
namics along latitudinal climate gradients? Taken together,
these questions probe how the temperature sensitivities of
different fitness components (Buckley et al. 2021) across mul-
tiple demographic life stages (Kingsolver et al. 2011; Levy
et al. 2015; Buckley 2022) contribute to ectotherm responses
to climate change.
Methods

TPCs for Fitness Metrics and Fitness Components

TPCs have been frequently used to quantify fitness or per-
formance as a function of temperature. Although body tem-
perature is the appropriate temperature metric (Huey et al.
2012), we used habitat temperature as a proxy, which is
reasonable for small-bodied insects on plants above the
soil surface (Stevenson 1985; Deutsch et al. 2008). We built
TPCs for fitness metrics and their components by fitting
functions to laboratory data via nonlinear least squares re-
gression using the nls function in R. (See “Fitting TPCs”
in the supplemental PDF for more details).
We examined two common metrics for fitness: the in-

trinsic population growth rate, rm, which is a direct mea-
sure of Darwinian fitness, and net reproductive rate, R0,
which is the number of viable offspring that each individual
produces over its lifetime. For many ectotherms, rm increases
to a maximum value at an optimal temperature, beyond
which it declines rapidly and becomes negative at high
temperatures (fig. 1A). This left-skewed thermal response
arises because of temperature effects on fitness compo-
nents (Amarasekare and Savage 2012). From the various
functions used to describe rm (e.g., Dell et al. 2011; Ama-
rasekare and Savage 2012), we adopted a widely used for-
mula (Deutsch et al. 2008; Vasseur et al. 2014) in which the
rise in rm is described by a Gaussian function and its decline
is described by a parabolic function:

rm p f exp�2
(T 2 Topt,r)

2

2j2
r

�
T ≤ Topt,r,

12

�
T 2 Topt,r

Topt,r 2 Tmax,r

�2

T 1 Topt,r,

ð1aÞ

where T is the habitat temperature (in kelvins), Topt,r is
the optimal temperature, Tmax,r is the maximum tempera-
ture above which rm is negative, and jr gives the steepness
of the rising portion of rm.
Net reproductive rate, R0, typically exhibits a symmet-

rical thermal response (fig. 1B; Huey and Berrigan 2001;
Kingsolver et al. 2013) that is well described by a Gaussian
function:

R0 p exp

�
2

(T 2 Topt,R0 )
2

2j2
R0

�
, ð1bÞ

where Topt,R0 is the optimum temperature for R0 and jR0

gives the variability about the optimum. Both rm and R0 were
scaled relative to their maximum values to facilitate compar-
isons across different populations. We used equations (1a)
and (1b) to quantify climate change impacts on fitness by
integrating the TPCs directly; these equations were not in-
corporated into the population model.
TPCs for fitness components are generally well under-

stood (Angilletta 2009; Kingsolver 2009; Kingsolver et al.
2011) and can be described by functions derived from first
principles of thermodynamics. The per capita birth rate,
b[T], exhibits a unimodal and symmetric temperature re-
sponse (fig. 1E) due to temperature effects on underlying
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biochemical regulatory processes (Dell et al. 2011; Amara-
sekare and Savage 2012) and is well described by a Gauss-
ian function:

b[T] p bTopt exp

�
2

(T 2 Topt,b)
2

2j2
b

�
, ð2aÞ

where bTopt is the maximum per capita birth rate at an op-
timal temperature Topt,b and jb gives the variability about
the optimum.
The per capita mortality rate of life stage i, di[T], ex-

hibits a monotonic thermal response (fig. 1F ) due to tem-
perature effects on biochemical rate processes (Gillooly
et al. 2001; Brown et al. 2004; Savage et al. 2004), which
is well described by the Boltzmann-Arrhenius function:

di[T] p di,TR exp

�
Ai

�
1
TR

2
1
T

��
, ð2bÞ

where di,TR is the per capita mortality rate of life stage i
(i p J for juveniles and i p A for adults) at a reference
temperature TR and Ai is its Arrhenius constant, quantify-
ing how rapidly mortality increases with rising tempera-
ture. Adult life span is the inverse of adult mortality rate,
1=dA[T].
The development rate, g[T], is reduced at both low and

high temperatures due to enzyme inactivation (Van der
Have and De Jong 1996; Kingsolver et al. 2011), which is
often described by the thermodynamic rate process model
(eq. [S1]). There were often insufficient data, however, for
us to robustly parameterize this function. By setting the
optimal (Topt,g) and maximum (Tmax,g) temperatures for
development directly from the data, we fit the remaining
parameters for the temperature response of the develop-
ment rate for the following piecewise function:

g[T] p f gTR� T
TR

�
exp

�
Ag

�
1
TR

2
1
T

��

11 exp

�
AL

�
1
TL

2
1
T

�� T ≤ Topt,g ,

gmax Topt,g ! T ≤ Tmax,g ,

0 T 1 Tmax,g ,

ð2cÞ

where gmax is given by evaluating g[T] at the optimal tem-
perature, Topt,g. Below the optimal temperature, Topt,g, de-
velopment rate is given by a simplified thermodynamic rate
process model (eq. [S1]), where gTR is the development rate
at the reference temperature, TR; Ag is its Arrhenius constant
(quantifying how rapidly development rate increases with
increasing temperature when enzymes are 100% active); and
TL and AL give the low temperature at which enzymes are
50% active and its Arrhenius constant, respectively. Develop-
ment rate is at its maximum value, gmax, between the opti-
mum temperature, Topt,g, and the maximum temperature,
Tmax,g , above which it is zero. Development time is the in-
verse of the development rate, 1=g[T] (fig. 1C).

ð2cÞ
Finally, we quantify survival as the fraction of individ-
uals that survive to the age of first reproduction. Survival
often exhibits an inverted U-shaped temperature response
(Kingsolver 2009; Amarasekare and Sifuentes 2012) with
sharp thresholds at both low and high temperatures (fig. 1D)
and is quantified from the TPCs of the juvenile per capita
mortality rate (eq. [2b]) and the development rate (eq. [2c])
as exp(2dJ[T]=g[T]) (Gurney and Nisbet 1998).
We quantified climate change impacts on fitness metrics

(rm and R0) and components (survival to reproduction, per
capita birth rate, development time, and adult life span) from
TPCs directly by integrating each TPC over each species’
site-specific seasonal habitat temperature for 5 years in the
recent and future climates (see “Climate Data”) using the
cubintegrate function with the hcubature argument in R.
TPCs of the per capita birth rate, stage-specific mortality
rates, and development rate were incorporated directly into
the population model.
Population Model

We developed a populationmodel to investigate howmulti-
ple fitness components across life stages affect insect fitness
and population dynamics with climate change. The model
is based on a framework (Scranton and Amarasekare 2017)
that models temperature effects on insect demographics
using temperature-dependent delay differential equations,
which mechanistically describe the population dynamics of
species with complex life cycles (Nisbet and Gurney 1983;
Murdoch et al. 1987; Nisbet 1997). Themodel (fig. 1C–1F)
has two life stages, juveniles (density J) and adults (densityA);
incorporates TPCs of fitness components (eqq. [2a]–[2c]);
and explicitly considers overwintering (supplemental PDF).
Model dynamics are given by

dJ
dt

p b[T]Ae2a[T]A 2 R(t)2 dJ[T]J , ð3aÞ

dA
dt

p R(t)2 dA[T]A: ð3bÞ

The function b[T ] gives the temperature response of the
per capita birth rate (eq. [2a]), while dJ[T] and dA[T ] de-
scribe the temperature responses of the per capita mor-
tality rate of the juvenile (prereproductive) and adult life
stages (eq. [2b]), all of which are the same as their TPCs.
The function a[T] gives the temperature response of in-
traspecific competition, which is assumed to act on the per
capita birth rate, as is widely observed in insects (Murdoch
et al. 2003), and is described as a Gaussian function very
similar to that of the per capita birth rate (eq. [S2]; see “Tem-
perature response of intraspecific competition” in the sup-
plemental PDF). The function R(t) gives the number of
individuals recruiting from the juvenile to the adult stage
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at time t, which based on theory of dynamically varying
time delays (Nisbet and Gurney 1983) is given by

R(t) p (b[T(t 2 t)]A(t 2 t)e2a[T(t2t)]A(t2t))

#

�
g[T(t)]

g[T(t 2 t)]
S

�
,

ð4aÞ

where t 2 t is the time (day) when maturing individuals
were born and t is their development time. Importantly,
because development time is temperature dependent, t
changes over time as temperatures vary. The function R(t)
therefore gives the number of individuals born t time ago
(first bracket of eq. [4a]) that survived through the juve-
nile stage given the temperature response of their devel-
opment rate (second bracket of eq. [4a]), where the devel-
opmental time delay t and juvenile survival S are themselves
time-varying differential equations (Nisbet and Gurney
1983):

dt
dt

p 12
g[T(t)]

g[T(t 2 t)]
, ð4bÞ

dS
dt

p S

�
g[T(t)]

g[T(t 2 t)]
dJ[T(t 2 t)]2 dJ[T(t)]

�
: ð4cÞ

We numerically solved the population model in Py-
thon (Python Core Development Team 2019) using the
JiTCDDE package (Ansmann 2018). For simplicity, we
used a constant initial history ( J p 100 and A p 10 for
time t 2 t ! 0) and ensured that the model was run for
sufficiently long to avoid transient dynamics. We incor-
porated overwintering into the model by setting the per
capita birth rate to zero and increasing the adult mortality
rate when temperatures were below a population-specific
threshold, Tmin, estimated by extrapolating the linear por-
tion of the development rate TPC to the temperature at
which it was zero (Dixon et al. 2009; see “Insect over-
wintering” in the supplemental PDF for more details). All
variables and parameters are summarized in table S2.
Seasonal Temperature Variation

Climate change affects both the mean habitat tempera-
ture and its seasonal variability (Field et al. 2012), which
we included in our analyses by setting T p T(t) in equa-
tions (1)–(4) and modeling seasonal temperature varia-
tion, T(t), using the following sinusoidal function:

T(t)p (MT ,x 1 DM,xt)

2 (AT ,x 1 DA,xt) cos(2p(t 1 ST ,x)=365), ð5Þ
whereM is the mean temperature, A is the amplitude

ð5Þ
T,x T,x

of seasonal temperature variation, and ST,x is the shift in the
timing of the warmest temperatures. The subscript x de-
notes the time period for which equation (5) was fitted to
data on mean daily near-surface air temperature (see “Cli-
mate Data”), which was done to capture temperature va-
riation during the recent climates (x p r; pre-2020) and
future climates (x p f ; 2025–2100). For simplicity, we used
linear functions to describe long-term climate changes in
mean temperature, DM,x, and in the amplitude of seasonal
temperature variation, DA,x. To facilitate comparisons be-
tween populations that may have been studied decades
apart, we set DM,r and DA,r to zero in the recent climate and
analyzed the model from 1980 to 1985, which was roughly
halfway through the average historical climate data. We set
DM,f and DA,f to zero in the future climate when the fit to
climate data yielded P 1 :05 and analyzed the model from
2095 to 2100. Using a continuous function rather than the
temperature data themselves was necessary to incorporate
seasonal temperature variation into the continuous-time
population model. It also effectively reduced the impacts of
short-term climate extremes while capturing the effects of
longer-term extreme events (Vasseur et al. 2014).
Climate Data

For each insect population (see “Insect Data”), we used
the KNMI Climate Explorer (http://climexp.knmi.nl) to
obtain historical daily temperature maxima and minima
from the nearest monitoring station in the Global Histor-
ical Climatology Network (table S3). We obtained CMIP6
climate model projections (O’Neill et al. 2016) of daily max-
imum and minima near-surface air temperatures for the
years 2025–2100 using the Copernicus Climate Data Store
(http://cds.climate.copernicus.eu), under the CMIP6 licens-
ing agreement. We used the Shared Socioeconomic Path-
way experiments SSP3-7.0 scenario, which simulates high
climate change mitigation and adaptation challenges and
a radiative forcing of 7.0 W/m2 in the year 2100. We used
the CESM2 model from the National Center for Atmo-
spheric Research (Danabasoglu 2019), which affords a spa-
tial resolution of 17. Using mean daily near-surface air tem-
perature is reasonable because the small-bodied insects in
our database are typically active in the morning and gener-
ally remain on host plants near the soil surface (Stevenson
1985; Deutsch et al. 2008).
Insect Data

We compiled a worldwide database of the temperature
responses of 21 distinct populations (17 species) of hemip-
teran insects spanning an 897 latitudinal range (table S1).
Data were sourced from the published literature using Goo-
gle Scholar and the Web of Science. The database was not
meant to be exhaustive but to include populations from

http://climexp.knmi.nl
http://cds.climate.copernicus.eu
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different climates. We restricted our analyses to studies
that reported temperature effects on the per capita birth
rate or fecundity rate, development rate or time, juvenile
survival or mortality rate, and adult life span or mortality
rate. For model fitting, we generally required studies to
have measured traits across at least five constant tempe-
ratures. To facilitate comparisons between populations, we
also restricted our analyses to two suborders of Hemiptera:
Heteroptera and Sternorrhyncha (and within the infra-
order Aphidomorpha). All species in our dataset are herbi-
vores. We included data from only one host plant species
or cultivar for the few studies that reported performance
on different host plants. Studies in our database were pub-
lished between 1962 and 2010 (table S1).
Insect Case Studies

There were two populations in our dataset for which cen-
sus data were also available, offering us a rare opportunity
to independently validate model dynamics. The tropical
species is Clavigralla shadabi, a pod-sucking bug (Hemiptera:
Coreidae) that is a major pest of legumes in the tropics
(Dreyer and Baumgartner 1996). The temperate species is
Apolygus lucorum (also referred to as Lygus lucorum), a
plant bug (Hemiptera: Miridae) that has become a key pest
of transgenic (Bt) cotton in China (Lu et al. 2008). We
parameterized the population model (eq. [3]) by fitting
equations (2a)–(2c) to temperature response data (for C.
shadabi, Dreyer and Baumgartner 1996; for A. lucorum,
Lu et al. 2010). We validated the population models using
field census data that were entirely independent from those
data used to parameterize the model. For the tropical spe-
cies, we quantified mean adult density from census data
collected in large field plots of cowpea (Vigna unguiculata)
during two growing seasons in 1991 (assumed to start in
mid-May and September) at an agricultural station in
Aborney-Calavi in southern Benin (fig. 4A, 4B of Dreyer
et al. 1994). For the temperate species, we obtained census
data collected from 2005 to 2006 in the Dafeng region of
China (fig. 2 in Lu et al. 2008). Because this insect becomes
active earlier in the year than the fields were planted in the
study (Li et al. 2010), there was an inherent lag between
the model dynamics and the census data. We therefore as-
sumed that individuals in the model become active only
after the date on which the fields were planted in the study,
which we implemented by setting Tmin to the temperature
in mid-May (day 137) when the fields were planted (i.e.,
Tmin p T(137)). We imposed this constraint only for model
validation and not for the subsequent analyses. Finally,
because juvenile and adult densities were not reported sep-
arately in this study, we also assumed for tractability that
the vast majority of individuals observed in the census were
the larger andmore conspicuous adults, such that we could
compare adult dynamics predicted by the model directly
with the census data reported in the study. Model simula-
tions were run for 10 years with the last 2 years coinciding
with the censuses (1982–1992 for C. shadabi and 1996–
2006 for A. lucorum).
Model Analyses and Comparisons with TPCs

We assessed the ability of the population model to predict
census data by using linear least squares regressions of adult
density predicted by the model against that observed in the
field. For each population in our database, we quantified the
effects of climate change as the difference in themean fitness
or fitness component between the recent and future cli-
mates. To facilitate comparisons across populations, mean
values were quantified by integrating over the same 5 years
of model projections (last 2 years of density-independent
population dynamics for rm) in the recent (1980–1985)
and future (2095–2100) climates and by integrating TPCs
directly over seasonal temperature variation (via eq. [5]).
This is because nonlinear thermal responses in the popu-
lation model and TPCs mean that the values at the mean
temperature do not equal the mean of the values across
variable temperatures due to Jensen’s inequality (Dowd
et al. 2015). We used linear least squares regression to as-
sess latitudinal patterns in these climate change impacts.
We evaluated whether directly applying TPCs over- or
underestimated the decline in fitness or its components
with climate change via the slopes of linear least squares
regressions of direct applications of TPCs and predictions
from the populationmodel. Finally, we quantified changes
in mean adult density, population variability (coefficient
of variation of adult density), and activity period (fraction
of the year in which habitat temperatures exceeded the
minimum temperature for development, Tmin) between
model predictions in the recent and future climates. We
used linear least squares regressions to evaluate latitudinal
patterns in these metrics.
Results

Insect Case Studies

We independently validated the population model for a
tropical species (Clavigralla shadabi), which experiences
high mean temperatures but small seasonal fluctuations
(fig. 2A), and a temperate species (Apolygus lucorum),
which experiences low mean temperatures but large sea-
sonal fluctuations (fig. 2B). Climate change in the tropical
region is predicted to increase mean annual temperature
by 0.97C by 2100 relative to the historical climate during
the census but actually reduce seasonal fluctuations by
0.47C (fig. 2A). Climate change in the temperate region is
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predicted to increase mean annual temperature by 3.97C
and seasonal fluctuations by 0.27C by 2100, with peak tem-
peratures occurring ~10 days earlier in the year (fig. 2B).
The population model very accurately predicted the field
census data of both the tropical species (fig. 2C; n p 28,
R2 p 0:78, t p 9:99, P ! :001) and temperate species
(fig. 2D; n p 22, R2 p 0:90, t p 14:3, P ! :001).
The model predicted that climate change will drive
the tropical species to exhibit greater oscillatory frequency,
but of lower amplitude (fig. 2E, 2G). For the temperate
species, the model predicted that climate change will cause
juvenile density to increase dramatically in winter (fig. 2F)
and peaks in adult density to be higher and occur earlier
(fig. 2H). Climate change was predicted to lower mean
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adult density and population variability of the tropical
species (fig. 2G) but increase mean adult density and pop-
ulation variability of the temperate species (fig. 2H).
Climate Change Impacts across Latitude

When applied across populations, the population model
predicted that climate change will reduce intrinsic growth
rate, rm, more at higher than at lower latitudes, as re-
vealed by linear regression (fig. 3A; n p 21, t p 2:06,
P p :05), but the net reproductive rate, R0, exhibited the
converse trend (fig. 3B; n p 21, t p 2:24, P p :04). Based
on linear regressions, lower-latitude populations suffered
greater declines in per capita birth rate (fig. 3D; n p 21,
t p 2:30, P p :03) and adult life span (fig. 3F; n p 21,
t p 6:03, P ! :001) with climate change, ultimately
reducing R0 more than at higher latitudes (fig. 3B). Con-
versely, greater reductions in survival to reproduction
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(fig. 3C; n p 21, t p 1:83, P p :08) at higher latitudes
ultimately reduced fitness more than at lower latitudes
(fig. 3A) despite lesser declines in per capita birth rate
and adult life span (fig. 3C, 3F) and greater reductions
in development time (fig. 3E; n p 21, t p 3:58, P p
:002).
TPC and Population Model Predictions

Typically, studies project fitness responses to climate change
by directly applying a single TPC for fitness or performance
to temperature data. By comparing fitnessmetrics and com-
ponents quantified by directly applying TPCs versus incor-
porating TPCs in the population model, we assessed how
much different fitness components and life stages contrib-
uted to species’ overall responses to climate change. Apply-
ing TPCs directly systematically underestimated projected
declines in fitness metrics and their components, as esti-
mates from directly applying TPCs were correlated with
population model projections with slopes shallower than
1 (fig. 4; table S4). Projections for changes in the per capita
birth rate and adult life span were not altered by including
TPCs in the population model because they are unaffected
by density dependence or time delays within the population
model.
Climate Change Impacts on Insect Population Dynamics

The population model predicted variable climate change
impacts on mean adult density across latitude. The greatest
projected declines, however, were concentrated between
307 and 457 (fig. 5A), and the five populations predicted
to become extinct with climate change are all within these
latitudes (Macrosiphum euphorbiae and Myzus persicae in
Canada and Aulacorthum solani, Brevicoryne brassicae,
andMyzus persicae in the United States; table S1). Climate
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change was predicted to drive significantly greater increases
in population variability at higher latitudes than at lower
latitudes, based on linear regression (fig. 5B; n p 21, t p
3:40, P p :004). The activity periods of temperate popula-
tions were also predicted to increase as a result of climate
change (fig. 5C).
Discussion

Our study revealed how differences in thermal sensitivity
across fitness components and life cycles influence climate
change responses, allowing us to address our four objectives.
First, we successfully validated our population model for a
tropical and a temperate insect species (fig. 2C, 2D). The
model projected that climate change will reduce mean adult
density and population variability of the tropical species but
will increase mean adult density and population variability
of the temperate species (fig. 2E–2H). These results extend
predictions that 37C–67C increases in mean temperature
alone will reduce the tropical, and increase the temperate,
species’ mean adult density (Scranton and Amarasekare
2017). Model validation by predicting field population dy-
namics is extremely rare (but see Johnson et al. 2015), but
it is critical for accurately forecasting climate change im-
pacts (Wheatley et al. 2017).
Second, our study revealed opposing latitudinal trends in

the fitness metrics, which may help to reconcile opposing
findings from directly applying TPCs. Our predictions that
climate change will reduce fitness, rm, more strongly at
higher latitudes, particularly between 357 and 457 (fig. 3A),
align with some past projections from directly applying
TPCs (Kingsolver et al. 2013; Vasseur et al. 2014). Midlat-
itude species (207–407) may be particularly vulnerable to
climate change because their TPCs are specialized to rela-
tively narrow temperature ranges compared with high-
latitude species, but they can experience pronounced cli-
mate variability (Kingsolver et al. 2013). Our population
model found that greater fitness declines at higher latitudes
in our dataset are attributable tomuch greater reductions in
survival to reproduction (fig. 3C). Conversely, our model
predicted that climate change will reduce the net reproduc-
tive rate, R0, more at low latitudes (fig. 3B) due to greater
declines in both reproduction and adult life span (fig. 3D,
3F). Our results highlight the importance of considering
multiple fitness components (Buckley et al. 2021).
Third, projections from direct applications of TPCs often

linearly correlated with those from the population model,
suggesting that directly applying TPCs can coarsely esti-
mate relative climate change impacts. Applying TPCs di-
rectly, however, consistently underestimated climate change
impacts on fitness metrics and components (fig. 4). The
underestimates resulted from simplifying survival dynamics
across the life cycle. The population model mechanistically
considers the temperature sensitivity of survival through
the juvenile stage (eq. [4c]) over a developmental period
(eq. [4b]) that is itself temperature dependent. If develop-
ment of the thermally sensitive juvenile stage coincides with
a warm period, exponential increases in juvenile mortality
with increasing temperatures (eq. [2b]) can impact popu-
lation dynamics substantially. We project that for many
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species, accelerated development with climate change will
not compensate for elevated mortality rates, particularly
at midlatitudes (207–407; fig. 3C). Directly applying TPCs
omits how developmental timing can, for example, result in
substantial juvenile mortality during warm periods, under-
estimating climate change impacts on survival and fitness
(fig. 4A–4C).More generally, these results emphasize the im-
portance of the survival component of fitness (Buckley et al.
2021) and how shifts in development rates can expose sensi-
tive life stages to thermal stress (Kingsolver et al. 2011;
Colinet et al. 2015; Levy et al. 2015; Ma et al. 2021; Buckley
2022).
Fourth, our population model predicted that climate

change will often reduce mean adult density and increase
population variability, particularly at midlatitudes (207–
407; fig. 5). Thermal variability at these latitudes intersperses
periods of population growth and decline (e.g., fig. 2F, 2H).
Climate change can transform optimal periods of the year
traditionally characterized by high population growth into
periods of substantial population decline, often via reduced
survival. Increased thermal opportunity with warming as-
sociated with higher fecundity and longer activity periods
(fig. 5C) is irrelevant if insects cannot survive warm periods
to capitalize on them (Sinervo et al. 2010). Lowermean den-
sities and greater population variability associatedwithmor-
tality events may even predispose midlatitude (207–407)
populations to extinction during periods of low density
(Kingsolver et al. 2013).
Such dynamics emphasize a critical need tomove beyond

fitness projections based on directly applying TPCs describ-
ing aggregate responses to estimate how climate change will
alter fitness components and demography (Kingsolver and
Woods 2016; Sinclair et al. 2016; Buckley and Kingsolver
2021). By comparing climate change impacts predicted by
a population model with those estimated by applying TPCs
directly, we show that population dynamics can be accu-
rately predicted and can shape climate change responses.
Furthermore, directly applying fitness TPCs can underesti-
mate climate change impacts by omitting differential shifts
in fitness components as well as how different demographic
life stages experience climate variability.
Our findings suggest that resolving demographic re-

sponses to climate change will require considering how
climate variability influences both the fecundity and the
survival components of fitness (Buckley et al. 2021), the
timescale of fitness or performance relative to those of en-
vironmental variation (Kingsolver and Woods 2016), and
how the cumulative effects of thermal exposure influence
performance and fitness (Rezende et al. 2020). These in-
sights, based on data from hemipteran insects, may apply
more generally to other organisms with multiple life stages
with different temperature sensitivities, such as other ecto-
therms or even plants, fungi, and some endotherms. For
example, while plants are underrepresented in TPC studies
(Angilletta 2009; Sinclair et al. 2016), TPCs of plant fitness
and components such as germination, survival, andflower-
ing could predict plant sensitivity to climate change and
forecast plant range shifts (Wooliver et al. 2022). For these
organisms, studies that explicitly consider temperature ef-
fects on fitness components across life cycles (e.g., on seed-
lings and reproductive plants; DeMarche et al. 2018) may
better predict climate change impacts than applying TPCs
directly.
Like most studies, we use TPCs estimated across constant

temperatures. A key challenge is to incorporate responses to
variable temperatures and to understand how temperature
variation affects ectotherm fitness and performance (Hel-
muth et al. 2014; Colinet et al. 2015; Sinclair et al. 2016;
Ma et al. 2021; Marshall et al. 2021). Our framework could
also be modified to explore additional processes important
to climate change responses, including behavior, phenotypic
variation and plasticity, and evolution (Angilletta 2009;
Huey et al. 2012; Sunday et al. 2014; Woods et al. 2015;
Sgrò et al. 2016; Sinclair et al. 2016;Williams et al. 2016). Fi-
nally, it is critical to study how organisms will respond to
shifts in climate factors beyond just temperature (Gun-
derson et al. 2016; Sinclair et al. 2016; Buckley and King-
solver 2021). Our populationmodel is flexible enough to in-
corporate variability in other climate factors, which would
be difficult to study by directly applying TPCs. More gener-
ally, our framework points to the importance of considering
how temporal climate variability impacts fitness compo-
nents across the life cycle (Buckley et al. 2021; Buckley
2022). Such considerations will become increasingly impor-
tant as climate change increases climate variability and the
incidence of climate extremes (Colinet et al. 2015; Williams
et al. 2016; Buckley and Kingsolver 2021; Ma et al. 2021).
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